
Cloak and Dagger: From Two Permissions
to Complete Control of the UI Feedback Loop

Yanick Fratantonio
UC Santa Barbara

yanick@cs.ucsb.edu

Chenxiong Qian, Simon P. Chung, Wenke Lee
Georgia Tech

qchenxiong3@gatech.edu
pchung34@mail.gatech.edu

wenke.lee@gmail.com

Abstract—The effectiveness of the Android permission sys-
tem fundamentally hinges on the user’s correct understand-
ing of the capabilities of the permissions being granted. In
this paper, we show that both the end-users and the security
community have significantly underestimated the dangerous
capabilities granted by the SYSTEM ALERT WINDOW and
the BIND ACCESSIBILITY SERVICE permissions: while it is
known that these are security-sensitive permissions and they
have been abused individually (e.g., in UI redressing attacks,
accessibility attacks), previous attacks based on these permissions
rely on vanishing side-channels to time the appearance of overlay
UI, cannot respond properly to user input, or make the attacks
literally visible. This work, instead, uncovers several design short-
comings of the Android platform and shows how an app with
these two permissions can completely control the UI feedback
loop and create devastating attacks. In particular, we demonstrate
how such an app can launch a variety of stealthy, powerful
attacks, ranging from stealing user’s login credentials and se-
curity PIN, to the silent installation of a God-mode app with all
permissions enabled, leaving the victim completely unsuspecting.

To make things even worse, we note that when installing
an app targeting a recent Android SDK, the list of its
required permissions is not shown to the user and that
these attacks can be carried out without needing to lure
the user to knowingly enable any permission. In fact, the
SYSTEM ALERT WINDOW permission is automatically
granted for apps installed from the Play Store and our
experiment shows that it is practical to lure users to unknowingly
grant the BIND ACCESSIBILITY SERVICE permission by
abusing capabilities from the SYSTEM ALERT WINDOW
permission. We evaluated the practicality of these attacks by
performing a user study: none of the 20 human subjects that took
part of the experiment even suspected they had been attacked.
We also found that it is straightforward to get a proof-of-concept
app requiring both permissions accepted on the official store.

We responsibly disclosed our findings to Google.
Unfortunately, since these problems are related to design
issues, these vulnerabilities are still unaddressed. We conclude
the paper by proposing a novel defense mechanism, implemented
as an extension to the current Android API, which would protect
Android users and developers from the threats we uncovered.

I. INTRODUCTION

One of the key security mechanism for Android is the per-
mission system. For the permission system to actually improve
security, the end-users and the community need to be aware
of the security implications of the different permissions being
requested. In this paper, we focus our attention on two spe-
cific permissions: the SYSTEM ALERT WINDOW and the
BIND ACCESSIBILITY SERVICE permissions. The former

allows an app to draw overlays on top of other apps, while the
latter grants an app the ability to discover UI widgets displayed
on the screen, query the content of these widgets, and interact
with them programmatically, all as a means to make Android
devices more accessible to users with disabilities.

Even though the security community (as well
as our adversaries) are beginning to discover the
threats from the SYSTEM ALERT WINDOW and the
BIND ACCESSIBILITY SERVICE permissions, we show
how seemingly innocuous design choices can lead to even
more powerful attacks. Moreover, we uncover how these two
permissions, when combined, lead to a new class of stealthy,
very powerful attacks, which we called “cloak and dagger”
attacks.1 Conceptually, “cloak and dagger” is the first class
of attacks to successfully and completely compromise the UI
feedback loop. In particular, we show how we can modify
what the user sees, detect the input/reaction to the modified
display, and update the display to meet user expectations.
Similarly, we can fake user input, and still manage to display
to the user what they expect to see, instead of showing them
the system responding to the injected input.

This is a sharp contrast to existing attacks that utilize
only one of the SYSTEM ALERT WINDOW and
BIND ACCESSIBILITY SERVICE permissions. With
only SYSTEM ALERT WINDOW permission (e.g., GUI
confusion attacks [1], [2], [3]), the attacker can modify
what the user sees, but cannot anticipate how/when the user
reacts to the modified display, and thus fails to change the
modified displayed content accordingly. Similarly, with only
BIND ACCESSIBILITY SERVICE permission, the attacker
can inject fake user inputs2, but the attacker cannot prevent
the user from seeing the results of these fake inputs displayed
on the screen. As such, in both cases, with only one of the two
permissions, the user will very quickly discover the attack.
On the contrary, in “cloak and dagger,” the synergy of the

1The term “cloak and dagger” can refer to: 1) situations involving intrigue,
secrecy, espionage, or mystery; or 2) in martial arts, literally wielding a
dagger in one hand and a cloak in the other. The purpose of the cloak was to
obscure the presence or movement of the dagger, to provide minor protection
from slashes, to restrict the movement of the opponent’s weapon, and to
provide a distraction.

2E.g., in [4], the BIND ACCESSIBILITY SERVICE permission is abused
to inject click events to allow the installation of adware and other unwanted
apps.



two permissions allows an attacker to both modify what user
sees and inject fake input, all while maintaining the expected
“user experience” and remaining stealthy. Such stealthiness
would in turn lead to better sustainability (i.e., the malicious
app can be made available on the Play Store and remain there
for a very long time).

We will also demonstrate the devastating capabilities the
“cloak and dagger” attacks offer an adversary by showing
how to obtain almost complete control over the victim’s
device. In this paper, we will demonstrate how to quietly
mount practical, context-aware clickjacking attacks, perform
(unconstrained) keystroke recording, steal user’s credentials,
security PINs, and two factor authentication tokens, and
silently install a God-mode app with all permissions enabled.
We note that by completely controlling the feedback loop
between what is displayed on screen and what is inputted
by the user, “cloak and dagger” attacks invalidate a lot of
security properties that are taken for granted (e.g., the user
will eventually notice something and take action), and make
the uncovered design issues more dangerous.

What makes “cloak and dagger” attacks even more
dangerous is the fact that the SYSTEM ALERT WINDOW
permission is automatically granted for apps installed from
Play Store, and it can be used to quietly lure the user to
grant the BIND ACCESSIBILITY SERVICE permission and
bootstrap the whole attack. Furthermore, it is straightforward
to get a proof-of-concept app requiring both permissions
accepted on the official store.

To test the practicality of these attacks, we performed a
user study that consisted of asking a user to first interact with
our proof-of-concept app, and then login on Facebook (with
our test credentials). For this experiment, we simulated the
scenario where a user is lured to install this app from the
Play Store: thus, SYSTEM ALERT WINDOW is already
granted, but BIND ACCESSIBILITY SERVICE is not. The
results of our study are worrisome: even if the malicious app
actually performed clickjacking to lure the user to enable
the BIND ACCESSIBILITY SERVICE permission, silently
installed a God-mode app with all permissions enabled, and
stole the user’s Facebook (test) credentials, none of the 20
human subjects even suspected they have been attacked. Even
more worrisome is that none of the subjects were able to
identify anything unusual even when we told them the app
they interacted with was malicious and their devices had been
compromised.

We reported our findings to Google, which promptly
acknowledged all the problems we have raised. However, no
comprehensive patch is available yet: while few of the specific
instances of problems can be fixed with a simple patch, most
of the attacks are possible due to design shortcomings that
are not easily addressable.

We conclude this paper by elaborating on a new, principled
defensive mechanism that would prevent, by design, the
presence of this new class of attacks. In particular, the
protection system involves an extension of the Android API,
in a way that would allow the developer to indicate to the

OS that a given widget plays a security-sensitive “role”. In
turn, when any of these widget is displayed, the OS would
enforce, in a centralized manner, a number of constraints on
the capabilities of third-party apps with respect to the two
permissions we discuss in this work.

While we believe our proposed defense system would
significantly improve the overall security of the Android plat-
form, the current state of Android security patch distribution
would currently leave most devices unpatched [5], and thus
susceptible to the problems uncovered in this work. Thus, we
hope this work will urge Google to reconsider their decision
of automatically granting the SYSTEM ALERT WINDOW
permission to apps hosted on the Play Store: This modification
could be quickly deployable as it only affects the Play Store
app itself. To the best of our knowledge, Google is refraining
to deploy this fix because this permission is requested
by top apps installed by hundreds millions of users (e.g.,
Facebook, Messenger, Twitter, Uber), and the new permission
prompt would interfere with the user experience. While these
concerns are understandable, we believe users and the security
community should be able to make informed decisions.

In summary, this paper makes the following contributions:
• We uncover several design shortcomings related to

the SYSTEM ALERT WINDOW permission, the
BIND ACCESSIBILITY SERVICE permission, and the
Android framework itself.

• We show that an attacker can easily weaponize these
design shortcomings by mounting a new class of
devastating attacks, dubbed “cloak and dagger,” which
lead to the complete control of the UI feedback loop.

• We evaluate the practicality of these attacks with a
user study. None of the 20 human subjects suspected
anything, even after we revealed the malicious nature of
the app they interacted with.

• We propose a defense mechanism that can block any
attempt to confuse the end-user and limit the (malicious)
capabilities of the accessibility service.

II. TWO PERMISSIONS

This section introduces relevant background information
about the two permissions discussed in this work, including
what capabilities they provide, how to enable them, and how
they are used in real-world apps. The next section, instead,
describes the existing security mechanisms that (attempt
to) enforce that the powerful capabilities granted by these
permissions cannot be abused.

A. The SYSTEM ALERT WINDOW permission

An app having the SYSTEM ALERT WINDOW
permission has the capability to draw arbitrary overlays on top
of every other app. According to the official documentation,
“Very few apps should use this permission; these windows
are intended for system-level interaction with the user.” [6].
Despite this warning, the SYSTEM ALERT WINDOW is
used by very popular apps such as Facebook, LastPass,
Twitter, and Skype. In particular, we found that about 10.2%
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(454 out of 4,455) of top apps on Google Play Store require
this permission. The most common usage of this permission
is floating widgets, such as the ones implemented by music
players, weather notification apps, and Facebook Messenger.
Security apps such as app lockers, desk launchers, and
password managers also use this permission to implement
some of their key features.

It is important to mention that, starting from Android 6.0,
this permission is treated differently from the others (such as
the more traditional location-related permission). In particular,
in the general case, the user needs to manually enable this
permission through a dedicated menu. Thus, the general
belief is that it is quite challenging for an app to obtain this
permission. However, we observed that if an app is installed
through the latest version of the official Play Store app,
the SYSTEM ALERT WINDOW permission is automatically
granted. Moreover, if the app targets an SDK API higher or
equal than 23 (an app’s developer can freely select which
API level to support through the app’s manifest), the Android
framework will not show the list of required permissions
at installation time: in fact, modern versions of Android
ask the user to grant permissions at run-time. This means
that, since the SYSTEM ALERT WINDOW permission is
automatically granted, the user will not be notified at any
point. We note that this behavior seems to appear a deliberate
decision by Google, and not an oversight. To the best of our
understanding, Google’s rationale behind this decision is that
an explicit security prompt would interfere too much with the
user experience, especially because it is requested by apps
used by hundreds of millions of users.

On the technical side, the overlay’s behavior is controlled by
a series of flags. The Android framework defines a very high
number of flags, the three most important being the following:

• FLAG_NOT_FOCUSABLE: if set, the overlay will not
get focus, so the user cannot send key or button events to
it, which means the UI events sent to the overlay will go
through it and will be received by the window behind it.

• FLAG_NOT_TOUCH_MODAL: if set, pointer events
outside of the overlay will be sent to the window behind
it. Otherwise, the overlay will consume all pointer
events, no matter whether they are inside of the overlay
or not. Note that setting the previous flag implicitly sets
this one as well.

• FLAG_WATCH_OUTSIDE_TOUCH: if set, the overlay
can receive a single special MotionEvent with the
action MotionEvent.ACTION_OUTSIDE for touches
that occur outside of its area.

If none of the above flags are specified, the overlay will
receive all events related to the user interaction. However, in
this case, these events cannot be propagated to the window
below the overlay. There are several other flags and technical
aspects that are relevant for our work: for clarity reasons, we
postpone their discussion to later in the paper.
B. The Accessibility Service

The accessibility service is a mechanism that is designed
to allow Android apps to assist users with disabilities. In

particular, an app with this permission has several powerful
capabilities. In fact, the app is notified (through a callback-
based mechanism) of any event that affects the device. For
example, the main onAccessibilityEvent() callback
is invoked whenever the user clicks on a widget, whenever
there is a “focus change,” or even when a notification is
displayed. The details about these events are stored in an
AccessibilityEvent object, which contains the package
name of the app that generated the event, the resource ID
of the widget, and any text-based content stored by these
widgets (note that the content of passwords-related widgets
is not made accessible through this mechanism). This object
thus contains enough information to reconstruct the full
context during which the event has been generated.

Moreover, an accessibility service app can also access
the full view tree and it can arbitrarily access any of the
widgets in such tree, independently from which widget
generated the initial accessibility event. An accessibility
service can also perform so-called actions: for example, it
can programmatically perform a click or a scroll action on
any widget that support such operations. It can also perform
“global” actions, such as clicking on the back, the home, and
the “recent” button of the navigation bar.

Google is aware of the security implications of this
mechanism. Thus, the user needs to manually enable this
permission through a dedicated menu in the Settings app.

Not surprisingly, this permission is less popular than the
SYSTEM ALERT WINDOW permission: Among the top
4, 455 apps on the Play Store, we find 24 apps use the
accessibility service. It is worth noting that none of them
are purely designed for people with disabilities. In fact, most
of them are security apps such as password managers (e.g.,
LastPass), app lockers, desk launchers, and antivirus apps.
We also found that 17 of these apps require both permissions
discussed in this paper. Several of these apps are installed
and used by more than one hundred million of users.

III. EXISTING SECURITY MECHANISMS

The two permissions discussed thus far grant capabilities
that are clearly security-related. However, although powerful,
the actions that an app can perform must adhere to what
specified in the documentation and to what is communicated
to the user. Thus, the Android OS implements a number of
security mechanisms to prevent abuse.

Security Mechanism #1. The SYSTEM ALERT WINDOW
permission allows an app to create custom views and widgets
on top of any another app. However, the system is designed
so that the following constraint always holds: if an overlay is
marked as “pass through” (that is, it will not capture clicks),
the app that created the overlay will not know when the user
clicks on it (however, since the overlay is pass through, the
click will possibly reach what is below); instead, if the overlay
is created to be “clickable,” the app that created it will be
notified when a click occurs, and it will also have access to its

3



(a) This figure shows the popup
that informs the user about the
security implications of en-
abling the accessibility service.
To grant authorization, the user
needs to press the OK button.

(b) This figure shows the
warning message that is shown
when the user clicks on the
OK button that is covered by
an overlay. The overlay in the
figure is drawn semi-transparent
for clarity. Of course, during a
real attack, the overlay would
be drawn completely opaque.

Fig. 1: Accessibility Service Popup & Security Mechanism

exact coordinates. However, the system is designed so that an
overlay cannot propagate the click to the underlying app. This
is a very fundamental security mechanism: in fact, if an app
could create an (invisible) overlay so that it could intercept
the click and also propagate it to the app below, it would be
trivial, for example, to record all user’s keystrokes: a malicious
app could create several overlays on top of all keyboard’s
button and monitor user’s actions. At the same time, since
the overlays are invisible and since the clicks would reach the
underlying keyboard, the user would not suspect anything.

An overlay can also be created with the
FLAG_WATCH_OUTSIDE_TOUCH flag, such that the
overlay will be notified of any clicks, even if they fall outside
the app itself. However, once again for security reasons, the
event’s precise coordinates are set only if the click lands in the
originating app, while they are set to (0,0) if the click lands
on a different app. In this way, the attacker cannot infer where
the user clicked by using the coordinates. This mechanism
makes also difficult mounting practical clickjacking attacks: in
fact, it prevents an app to lure the user to click on what’s below
and at the same time being notified exactly where the user
clicked, and it is thus not trivial to infer whether the user has
been successfully fooled. This, in turn, makes mounting multi-
stage UI redress attacks challenging, since there is currently no
reliable technique to know when to advance to the next stage.

Security Mechanism #2. An accessibility service app has
access, by design, to the content displayed on the screen by the

apps the user is interacting with. Although the accessibility ser-
vice does not have access to passwords (see below for a more
detailed discussion), it does have privacy-related implications.
Thus, in Android, the service needs to be manually enabled
by the user: after pressing on the “enable” switch, the system
shows to the user an informative popup (as in Figure 1a) and
she needs to acknowledge it by pressing on the OK button.

Security Mechanism #3. Given the security implications
of the accessibility service, the Android OS has a security
mechanism in place that aims at guaranteeing that other apps
cannot interfere during the approval process (i.e., when the
user is clicking on the OK button). This defense has been
introduced only recently, after a security researcher showed
that it was possible to cover the OK button and the popup
itself with an opaque, passthrough overlay: while the user is
convinced to interact with the app-generated overlay, she is
actually authorizing the accessibility service permission by
unknowingly pressing OK [7].

The new security mechanism works in the following
way. For each click, the receiving widget receives
a MotionEvent object that stores the relevant
information. Among these information, Google added
the FLAG_WINDOW_IS_OBSCURED flag (obscured flag, in
short). This flag is set to true if and only if the click event
passed through a different overlay before reaching its final
destination (e.g., the OK button). Thus, the receiving object
(once again, the OK button in our case) can check whether
this flag is set or not, and it can decide to discard the click
or to take additional precautions to confirm the user’s intent.
Figure 1b shows the message shown when the user clicks
on the OK button while an overlay is drawn on top. We
inspected the Android framework codebase and we found that
this flag is used to protect the accessibility service, but also to
protect the Switch widgets used to authorize each individual
permission. Google is advising third-party developers to use
a similar approach to protect security-sensitive applications.

Security Mechanism #4. To maximize the usefulness of
accessibility service apps, they are given access to the content
displayed on the screen. However, for security reasons, they
are not given access to highly private information, such as
password. This is implemented by stripping out the content
of EditText widgets known to contain passwords. [8]

IV. ATTACKING THE UI FEEDBACK LOOP

As we have mentioned in the introduction, the ultimate
strength of “cloak and dagger” attacks lies in their complete
control of the UI feedback loop between what users see on
the screen, what they input, and how the screen reacts to that
input. From a more conceptual point of view, the UI offers
an I/O channel to communicate with the user. In turn, the two
directions of the channel can be attacked in an active or a
passive fashion. This leads to four distinct attack primitives,
which we discuss next.

Primitive #1: Modify What The User Sees. An attacker may
want to confuse or mislead the user by showing her something

4



other than what is displayed on the screen. For example, in
the context of clickjacking, the attacker may want to modify
the prompt displayed by the system to trick the user into
clicking “yes.” In other scenarios, instead, the attacker may
want to hijack the user’s attention, for example by launching
an attack while the user is distracted watching a video.

Primitive #2: Know What is Currently Displayed. Before
we can properly modify what the user sees, we need to know
what we are modifying. Continuing with the clickjacking ex-
ample, our attack can only be successful if we know the system
is displaying the targeted prompt: if we show our modified
prompt when the target is not even on the screen, we will
alert the user that something is wrong. As another example,
to steal the user’s password with a fake Facebook login, it
only makes sense to show the fake UI when the real one is
expected. In general, an attacker aims at determining which
app is on top and which activity is displayed at any given time.

Primitive #3: User Input Injection. This primitive allows
an attacker to control the user’s device, while all the previous
primitives provide proper “masking” for the effect of user
input injection. In particular, to disable specific security
features or to silently install an additional app, the attacker
needs, for example, to inject clicks to the Android Settings app.

Primitive #4: Know What the User Inputs (and When).
The attacker may want to monitor relevant GUI events, such
as user clicks. In some cases, this is necessary so the attacker
can update the modified display in Primitive #1 to maintain the
expected user experience. With the clickjacking example, it is
necessary to know that the user has clicked on either “yes” or
“no” to dismiss the fake message we are displaying. This prim-
itive can also be used to leak the user’s private information.

V. DESIGN SHORTCOMINGS

We identified four different design choices/shortcomings in
Android that either enable easy implementation of the attack
primitives, or make it harder to defend against cloak and
dagger attacks.

Design Shortcoming #1. The main capability granted by
the SYSTEM ALERT WINDOW permission is the ability
to draw windows on top of other windows. In particular, an
app can draw arbitrary windows (in terms of their shape,
appearance, and position) at arbitrary times. This provides a
first step to implementing Attack Primitive #1.

Design Shortcoming #2. Regarding the accessibility
service: all GUI objects on the screen are by
default treated equal. As such, any app that has the
BIND ACCESSIBILITY SERVICE permission can easily
implement both Attack Primitives #2 and #4 to receive
necessary information from most apps, and implement
Attack Primitive #3 to inject input to many apps. The only
exceptions are apps that declare some of their widgets as
security sensitive or choose to override the default behavior

of how their widgets provide information to the accessibility
service. The most prominent example of the former exception
is the getText() method of password-related EditText
widgets that returns an empty string (instead of returning its
content). Another security consequence of this default “on”
policy towards the accessibility service is that it is very easy
to overlook apps/widgets that need to override the default for
security reasons, as we will demonstrate in Section VI.

Design Shortcoming #3. As just mentioned, in Android an
app can create a number of windows which are all completely
customizable. The customization is related to the look and feel
of the window, and provides what is necessary to implement
Attack Primitive #1 in a completely stealthy manner (i.e., any
overlay can look like part of the UI it’s overlaying without
any visible difference). Furthermore, it is also possible to
define callbacks (mostly related to the graphical UI) and the
window’s behavior when clicked. Moreover, these callbacks
receive specific objects (e.g., MotionEvent) that provide
several information about the context. We show that the
inherent complexity of the WindowManager leads to the
creation of unexpected side channels, and possibly provides an
alternative method to implement Attack Primitives #2 and #4.

Design Shortcoming #4. By design, Android apps do not
have access to the current context. For example, an app cannot
know whether, at a given point in time, there is another app
displayed on top of it. While this does not necessarily help the
implementation of any of our Attack Primitives, it certainly
makes it very hard for individual apps to defend against cloak
and dagger attacks. To the best of our knowledge, the only
Android feature that provides some useful information for apps
to know their UI is being attacked is Security Mechanism #3,
but we will show that this mechanism is not always effective.
The key observation in this design shortcoming is that an app
does not have any capability to determine whether it should
trust the user input and it does not know whether the user had
access to enough information to take an informed decision.

We note there is an interesting trade-off between this
design shortcoming and Design Shortcoming #1 (DS#1): the
more contextual information the Android framework exposes
to an Android app, the more information a malicious app has
access to implement attacks. We also note that while Design
Shortcoming #2 may have security-related repercussions, it
does save developers a lot of efforts in making their apps
accessible to people with disabilities.

VI. UNLEASHING MAYHEM

This section discusses how an attacker can weaponize
the design shortcomings discussed thus far. Moreover, we
show how, in some cases, the existing security mechanisms
themselves can be used as an attack vector. All the attacks
discussed in this section have been tested on a Nexus 5
running Android 6.0.1, and they are still unaddressed at the
time of writing. Table I in Appendix A systematizes the main
aspects of these attacks.
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Fig. 2: This figure shows the organization of the overlays
created for our “Keystroke Inference” attack (Attack #3).
Of course, the overlays are made visible only to ease our
explanation: the overlays would be created invisible during
an actual attack.

A. Clickjacking Made Practical

Attack #1: Context-aware Clickjacking. One known
attack in Android is the possibility to perform clickjacking
attacks. These attacks work by spawning a security-sensitive
app, which we call the target app, and by creating an
on-top, opaque overlay that does not capture any of the user
interaction: while the user believes she is interacting with the
app she sees, she is in fact interacting with the target app in the
background. In a security context, the target app would usually
be the Android Settings app, or any other “privileged” app.
The malware would then use social engineering techniques
to lure the user to click on specific points on the screen.

Clickjacking is relevant to our work because, very recently,
a security researcher discovered that it is possible to perform
clickjacking to lure the user to unknowingly enable the
accessibility service [7]. In response to the researcher’s
report, Google implemented the security mechanism based
on the FLAG_WINDOW_IS_OBSCURED flag described
in Section III as Security Mechanism #3. The researcher
subsequently discovered that the current implementation of
this defense mechanism only checks that the portion of the
clicked button was not covered by any overlay, and it does
not guarantee that the OK button is visible in its entirety.
According to Google, this issue does not pose any concrete
and practical risks, and, reportedly, there are no plans to fix it.

The main limitation of current clickjacking techniques is
that the malicious app does not know when and where the user
clicked (this is ensured by Security Mechanism #1 described
in Section III) and so it does not have precise control on when
to move to the next step, making the attack less practical.

We developed a technique that makes clickjacking aware of
the user’s actions. We call this new technique context-aware
clickjacking. Our technique works by creating a full screen,
opaque overlay that catches all user’s clicks, except for the

clicks in a very specific position on the screen (the point
where the attacker wants the user to click). This is achieved
by actually creating multiple overlays so to form a hole: the
overlays around the hole would capture all the clicks, while the
overlay on the hole would make the clicks pass through. The
key observation that makes this technique context-aware is the
following: since there is only one hole, there is only one way
for a user’s click to not reach the malicious app. This observa-
tion makes it possible to use the Security Mechanism #1 as a
side channel: if the event’s coordinates are set to (0,0), then
it means that the user clicked exactly in the hole (otherwise,
the event’s coordinates would be set to their actual value).

This feature makes these attacks particularly practical.
For example, when performing clickjacking to lure the user
into enabling the accessibility service, the attacker just needs
to hijack three clicks: these three clicks do not need to be
consecutive or near in time. Moreover, the malicious app
knows exactly when the user clicked on the hole. This gives
the app enough information to know when to move to the
next step, and to update the overlay shown to the user so
to appropriately react to the click, even if the click never
reached the malicious app.

Attack #2: Context Hiding. In Section III we described how
the Android OS features a security mechanism based on the
obscured flag: an object receiving a click event can check
whether the user click “passed through” an overlay. We also
mentioned that a security researcher determined how this
mechanism is implemented in an insecure way: as long as the
user clicks on a part that is not covered, the flag is not set.

We argue that this defense mechanism would be insecure
even if it were implemented correctly. In fact, we believe this
mechanism is vulnerable by design: if the user can only see
the OK button, how can she know what she is authorizing?
Is she clicking the OK button on an innocuous game-related
popup, or is she unknowingly enabling the accessibility
service? By using context-aware clickjacking, it is easy to
create overlays with a single hole in correspondence to the
OK button, thus completely covering all security-relevant
information. Thus, a malicious app can hide the real context
from the user, and it can lure her into clicking on the OK
button – even if the OK button is entirely visible.

As we will discuss in Section VII, we performed a user
study that evaluated how practical it is to lure users to
enable the accessibility service even if the obscured flag
implementation were correct: none of the human subjects
involved in our user study suspected they were under attack.

B. Keystroke Recording

We now describe three new attack vectors to record
all user’s keystrokes, including sensitive information
such as passwords. The first attack only relies on the
SYSTEM ALERT WINDOW permission and exploits
DS#1 and DS#3, the second attack only relies on the
BIND ACCESSIBILITY SERVICE and exploits DS#2,
while the third attack relies on the combination of the two.

6



Attack #3: Keystroke Inference. This attack is based
on a novel technique that attempts to circumvent Security
Mechanism #1. In particular, we show how it is possible to
use the well-intentioned obscured flag recently introduced
by Google as a side channel to infer where the user clicked.
The net result of this attack is that an app with just the
SYSTEM ALERT WINDOW permission can record all
keystrokes from the user, including private messages and
passwords.

The attack works in several steps. We first create
several small overlays, one on top of each key on the
keyboard, as shown in Figure 2. Of course, during a real
attack, these overlays would be completely transparent
and thus invisible for the user. The overlays are created
with the following flags: TYPE_SYSTEM_ALERT,
FLAG_NOT_FOCUSABLE, FLAG_NOT_TOUCHABLE,
and FLAG_WATCH_OUTSIDE_TOUCH. These flags make
sure that each overlay does not intercept any click by the user
(that is, when the user clicks on a keyboard’s key, the click
will reach the keyboard, as the user would expect). However,
note that, thanks to the FLAG_WATCH_OUTSIDE_TOUCH,
each overlay receives a MotionEvent object for each click.
As described in Section III, these click events do not contain
any information about where the user actually clicked.

However, we discovered that it is possible to use Google’s
obscured flag as a side channel to infer where the user
actually clicked. This attack works thanks to the following
two observations. First, the overlays are created in a very
specific, attacker-known order, and they are organized as in
a stack: overlay #0 (top left in Figure 2) is at the bottom of
the stack, while overlay #42 (bottom right) is at the top: thus,
each of these overlays has a different Z-level. The second
observation is that, for each overlay, the obscured flag is set
depending on whether or not the user clicked on an overlay
that was on top of it. For example, if the user clicks on overlay
#0, the MotionEvent events received by each overlay will
have the obscured flag set to 0. However, if the user clicks
on overlay #1, the event delivered to overlay #0 will have the
obscured flag set to 1. More in general, we observed that if the
user clicks on overlay #i, the events delivered to overlays #0 →
#(i-1) will have the obscured flag set to 1, while all the events
delivered to the remaining overlays will have the flag set to 0.

Thus, by creating the overlays in a specific order and by col-
lecting the events and their obscured flags, it is effectively pos-
sible to use the obscured flags as a side channel to determine
on which overlay the user has clicked, thus breaking Security
Mechanism #1. We were able to write a proof-of-concept that
can infer all keystrokes in a completely deterministic manner.

Attack #4: Keyboard App Hijacking. The accessibility
service is a powerful mechanism that has access to the content
displayed by the apps the user is interacting with. However,
for security reasons, it is designed so that it cannot get
access to security sensitive information, such as passwords.
In practice, this is implemented so that when an app attempts
to read the content of an EditText widget containing a
password, the getText() method always returns an empty

string. This behavior is documented at [8]: “[...] any event
fired in response to manipulation of a PASSWORD field does
NOT CONTAIN the text of the password.”

It is possible to use DS#2 to bypass this
protection mechanism. In fact, by specifying the
FLAG_RETRIEVE_INTERACTIVE_WINDOWS (according
to the documentation, it indicates to the system that “the
accessibility service wants to access content of all interactive
windows” [9]), the keyboard app itself (package name:
com.google.android.inputmethod.latin) is
treated as a normal, unprivileged app, and each of the key
widget generates accessibility events through which it is easy
to record all user’s keystrokes, including passwords.

Attack #5: Password Stealer. Attacks #3 and #4 show that
it is possible to abuse DS#1, DS#2, and DS#3 to record all
user’s keystrokes.

Here we describe an additional attack that uses a
combination of the two. The attack works in several steps.
First, the attacker uses the accessibility service to detect that,
for example, the user just opened the Facebook app’s login
activity. At this point, the malicious app uses the overlay
permission to draw an overlay that looks like the username
and password EditText widgets. Note how, differently
from the previous attacks, the widgets are actually visible:
however, they match exactly the Facebook user interface, and
the user does not have any chance to notice them. Thus, the
unsuspecting user will interact with the malicious overlays
and will type her credentials right into the malicious app.

To make the attack unnoticeable to the user, the malicious
app would also create an overlay on top of the login button:
when the user clicks on it, the malicious overlay would catch
the click, fill in the real username and password widget in the
Facebook app, and finally click on the real Facebook’s login
button. At the end of the attack, the user is logged in her
real Facebook account, leaving her completely unsuspecting.
Moreover, by checking whether the login attempt was
successful, our attack can also confirm that the just-inserted
credentials were correct.

We note that this technique is generic and it can be applied
to attack any app (e.g., Bank of America app). Moreover,
the malicious app would not need to contain any code of
the legitimate app, thus making it more challenging to be
detected by repackaging detection approaches. Our attack,
in fact, replaces many of the use cases of repackaging-based
attacks, making them superfluous.

C. Unlocking The Device

We now describe two attacks related to the Android locking
mechanisms. These two attacks are possible due to DS#2.

Attack #6: Security PIN Stealing. We discovered that the
security screen pad used by the user to digit her PIN to
unlock the device generates accessibility events, and that an
accessibility app is able to receive and process the events even
when the phone is locked. In fact, we discovered that the
Button widgets composing the security pad are treated as
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normal, unprotected buttons and that their content description
contains the number or symbol represented by the button.
Thus, any app with accessibility service can easily infer which
buttons the user is pressing and can thus infer which is the
user’s PIN. We believe the user’s PIN should be considered as
sensitive as user’s passwords: first, it is possible that the user
reuses the PIN in other settings; second, and more importantly,
the attacker armed with the knowledge of the PIN can use it to
unlock the phone in case of physical access to the device, or it
can use it to perform other attacks, as the one we describe next.

Attack #7: Phone Screen Unlocking. We discovered that apps
with accessibility service not only can receive events while the
phone is locked, but they can also inject events. We discovered
it is possible for an accessibility app to unlock the device in
case a “secure lock screen” is not used. We also discovered an
app can inject events onto the security pad and it can click and
“digit” the security PIN (which can be inferred by using the
previous attack). To make things worse, we noticed that the
accessibility app can inject the events, unlock the phone, and
interact with any other app while the phone screen remains
off. That is, an attacker can perform a series of malicious
operations with the screen completely off and, at the end, it can
lock the phone back, leaving the user completely in the dark.

We note that this attack works if the user did not setup a
security lock, or if she setup a security PIN. However, this
attack does not work if the user setup a secure pattern: to the
best of our knowledge, it is not possible to inject “swipe”
events through accessibility service. Interestingly, at a first
impression it appears that to unlock the phone (even in case
of security PIN) one would need to “swipe up” the security
lock icon. However, it turns out that by injecting a “click
event” on the lock icon, the security pad appears and the
accessibility app can inject the PIN and unlock the phone.
We also note that, according to the documentation, not even
an app that enjoys full admin privileges should have the
possibility to unlock the device.

The fact that an app can unlock the device and stealthily
perform actions could be also combined with other attacks
that generate revenue: in fact, it is simple to imagine a
malware that would unlock the phone during the night, and
it would go on the web and click ads (a scenario we discuss
later in this section) or perform any other actions that directly
generate revenue.

D. From Two Permissions to God Mode
Given an app with the SYSTEM ALERT WINDOW and

the BIND ACCESSIBILITY SERVICE permissions, we
show how it is possible to install a second malicious app that
requires all permissions and how to enable all of them, while
keeping the user unsuspecting.

Attack #8: Silent App Installation. The initial malicious app
(the one with only the two permissions discussed in this paper)
can embed a secondary, much more malicious app in the
form of an APK. Thus, an app can initiate the app installation
by sending an Intent with ACTION_VIEW as action, and
Uri.parse("file:///<path>/malware.apk"),

"application/vnd.android.package-archive"
as additional data. This will generate a prompt asking the user
for confirmation, at which point the app can automatically
click on the Install button. Before doing that, however,
the app checks whether side-loading of third-party app is
enabled: if it is not enabled, the app opens the Settings app,
browses to the security settings, and automatically grants
itself permission to side load additional apps.

Since the Install button is unprotected, it is possible to
perform this attack while stealthily covering the screen with
an on-top overlay. In fact, as we discuss later in the paper,
we did test the practicality of this approach by performing
this (and the following) attack while the user believed to be
watching an innocuous video. The app can then cover its track
by opening the “recent windows” and by dismissing them all.

Attack #9: Enabling All Permissions. Once the secondary
malicious app is installed, it is trivial for the initial
app to grant device admin privileges: we found that the
“Enable” button is unprotected and it can be easily clicked
through an accessibility event. However, the Switch
widgets that the user needs to click are protected by the
FLAG_WINDOW_IS_OBSCURED flag. It turns out that the
current implementation of the mechanism that sets and
propagates this security flag handles user-generated clicks and
clicks generated by an accessibility service app in a different
way. In particular, we observed that the flag is not set for any
event generated by the accessibility service. Thus, we found
it is possible to automatically click and enable all permissions
while a full screen overlay is on top. At the end of this and
the previous attack, the initial unwanted application was able
to silently install a God-mode malicious app.

E. Beyond the Phone

Attack #10: 2FA Token Stealer. We show that a malicious
app that has access to the accessibility service is able to steal
two-factor authentication codes stored on or received by the
phone. In fact, for SMS-based tokens, the accessibility service
can be configured to be notified for any new notification, which
contains the required token. For tokens of other natures, such
as the ones offered by the Google Authenticator app [10], the
malicious app can easily open the activity displaying the to-
kens and easily read them off the screen: in fact, we found that
none of the views containing the tokens are protected. To make
things worse, this attack can be combined with the fact that the
phone can be unlocked and that the malware can perform these
operations while the screen is off. The malware can also gener-
ate a token “when needed,” and then get rid of the notification.

Attack #11: Ad Hijacking. An accessibility service app
is notified of all GUI-related event that happens. These
events include “click” and “touch” events, but also “windows
change” events when a graphical interface is redrawn. The
app also gets access to the app (identified by its package
name) that generates these events. The app would also get
access to the entire view tree, which includes details such
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as the type of each widget in the tree, their size, and their
position on the screen. This information can be used by a
malicious app to fingerprint each activity of each app and
identify where and when ads are shown. At this point, the
malicious app can draw an invisible on-top overlay on top of
the ad: whenever the user would press the ad, the malicious
app would intercept the click and redirect the user to the
malware author-owned ad, which would generate revenue.

Industry researchers recently discovered malware samples
that abuse the accessibility service to automatically install
adware apps and to automatically click on ads generated
by them. While this is profitable, the user would be clearly
aware of what is happening, and it would attempt to uninstall
the malicious apps or, more likely, to factory reset her
phone. We note that while these malware samples also abuse
accessibility service, their malicious process is very different.
In particular, our attack is completely stealthy, and none of
the parties involved (i.e., the user, the OS, the app developer)
has any chance to notice the fraud.

Attack #12: Exploring the Web. Among other things, we
discovered that the accessibility service has full access to the
phone’s browser. It is easy to write a program to open Chrome
and visit an arbitrary page. To make things worse, the content
of the page is automatically parsed by accessibility service and
easy-to-use Android objects are provided for each component
shown on the target HTML page. For example, the HTML
page itself is made accessible through a View tree and an
HTML button is converted to a Button Android widget. The
accessibility service not only does it have access to the infor-
mation, but it is also able to interact with it by, for example,
performing “click” actions. Once again, it is simple to imagine
malware that would secretly unlock the phone and click on
“like” buttons on social networks and post content on behalf
of the user. Moreover, since all HTML elements are nicely ex-
posed, we believe it would be simple to extend the “password
stealer” attacks we described earlier to web-based forms.

F. Putting All Together
All the attacks that we have described start off by

just luring an user to install a single app hosted on the
Play Store. This app’s manifest would declare only two
permissions: the SYSTEM ALERT WINDOW and the
BIND ACCESSIBILITY SERVICE permissions. A quick
experiment shows that it is trivial to get such an app accepted
on the Play Store. In particular, we submitted an app requiring
these two permissions and containing a non-obfuscated
functionality to download and execute arbitrary code, and this
app got approved after just a few hours. Since this app targets
a recent Android SDK, at installation time the user would
not see any prompt related to the required permission, thus
leaving him completely unsuspecting. Moreover, since the
SYSTEM ALERT WINDOW permission is automatically
granted for apps hosted on the Play Store, the only missing
step for the malicious app is to lure the user to enable the
BIND ACCESSIBILITY SERVICE permission.

However, as we described earlier, it is possible to perform
clickjacking attacks to lure the user into enabling the

BIND ACCESSIBILITY SERVICE permission: thanks to
our new context-aware clickjacking attack, this can be done
in a very practical and deterministic manner. Our user study,
described in Section VII shows that none of the human
subjects involved suspected anything. In fact, the attacker just
needs to hijack three clicks from the user, and since the app
has full control of the context, these clicks do not even need
to be sequential. After the user’s three clicks, the device is
fully compromised and, to make things worse, the user does
not even have a chance to suspect anything is wrong.

At this point, the malicious app can enable side-loading,
install another app (downloaded at run-time), enable all its
permissions, including device admin and accessibility service,
and launch it: a God-mode app is now installed on the device.
Given the attacks we described, the malicious app would
now be able to wait until night, to then silently unlock the
phone and perform the attacks we described earlier, including
leaking all user’s credentials (including passwords, security
PINs, and two-factor authentication codes), ad jacking, and
browsing the web and leaking even more data. Since the app
has all permissions enabled, the malware could perform the
variety of malicious actions described in the literature (e.g.,
record audio and video, steal user’s contacts), the imagination
being the only limit.

We note that the initial malicious app has even the chance
to clean after its steps. For example, the app could disable
the side-loading option. As another example, consider a
scenario where the initial app is installed through social
engineering, by making the user believe that this app is, for
example, a Pokemon Go-related app: to delete all traces, once
the secondary malicious app has been installed, the initial
malicious app could silently install the real Pokemon Go
app from the Play Store, and it could then uninstall itself: at
this point, the user would believe she has interacted with the
legitimate app from the very beginning.

To make things worse, we finally note that the new app has
a series of ideal properties for malware. In fact, the secondary
installed app does not need to be hosted on the Play Store,
but it can be dynamically downloaded: thus, the attacker has
full flexibility when generating this new app, and it could
even use polymorphism to make it very challenging to be
tracked. It is also possible to configure the malicious app to
not appear in the app’s launcher (this is possible by removing
android.intent.category.LAUNCHER from the
app’s manifest). Last, since the malicious app is granted with
device admin privileges, its uninstall button will be disabled,
and it is thus easier to be disguised as a legitimate system
app. Of course, it is possible that a determined user will be
able to spot this malicious app. However, since the attacks
described in this paper are designed to be stealthy, the user
would not even think her device is compromised.

VII. USER STUDY

Some of the attacks we presented require interaction with
the end user. We designed and performed a user study to
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Fig. 3: This figure shows how our attack stealthily installs a
malicious app using the accessibility service while covering
its action using an overlay vs. using only accessibility service
(e.g., [4]).
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Didn’t I click 
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Fig. 4: This figure shows how our attack stealthily steals
the user’s credentials by using a fake UI and completing the
login with the help of accessibility service vs. using only a
fake UI (e.g., [11], [12], [1], [2], [3]).

evaluate the practicality of these attacks. In particular, we
evaluated the practicality of the attacks related to clickjacking
(#1 & #2), silent installation of God-mode app (attacks #8 &
#9), and the most complex of the keystroke recording attack
(attack #5). We start this section with a description of the user
study, and then discuss the results. Our study was reviewed
and approved by our institution’s internal review board (IRB).

A. Experiment Description

Human Subjects Recruitment. For our study, we were able
to recruit 20 human subjects. We performed the recruitment
by advertising our study through mailing lists and word-of-
mouth. The subjects involved in our study have a variety
of different backgrounds, ranging from doctoral students,
post-doctoral researchers, and personnel involved in the

administration. All the participants were recruited at the
research institution where the study has been conducted. The
only requirement to participate to the study was to have at
least a minimum familiarity with Android devices. While
recruiting the participants, we ensured that they were not
aware of any details related to our experiment.

Experiment Settings. Before starting the experiment, we
provided a bit of context to the human subject. However,
since our main goal is to determine the stealthiness of our
attacks, we obviously could not state our actual intent. Thus,
we created a fictitious scenario in which we, the researchers,
created a novel security mechanism for Android and that we
wanted to test whether this new mechanism would introduce
noticeable effects.3 As we discuss throughout this section,
the user is first asked to interact with an app we wrote. This
app only requires the two permissions we focus on in this
paper. Moreover, we simulate a scenario in which the user
downloaded the app from the official Play Store: thus, the
SYSTEM ALERT WINDOW permission is already granted,
while the BIND ACCESSIBILITY SERVICE permission is
not. The user will be lured to enable this second permission
as the user study progresses.

Experiment Organization. The study is organized as
followed. First, we ask the user to answer few preliminary
questions. The main goal of these initial questions is to assess
whether the subject had familiarity or owned an Android
device. After we have established that the subject satisfies our
inclusion criteria, we proceed with the main part of our study,
which is a controlled experiment designed to test whether the
user can tell whether they are under attack or not. We did this
for two sets of attacks in Section VI, namely attacks #1, #2, #8,
#9 (for enabling accessibility and installing the God-mode app)
and attack #5 (for stealing Facebook password). In particular,
we ask the user to interact with an app we wrote (running on
a device we provide) twice for each set of tested attacks, one
where the attack actually happened and one “control run”
where the attack was not launched. We randomized the order
of the runs.4 After the experiment for each of the tested set of
attacks, we asked the subject few questions to assess whether
she had noticed anything during the two runs.

As a final step of our study, we give the subject the
possibility to freely interact with the device (which now has
accessibility enabled for our app, and the God-mode app in-
stalled) and we ask them to report any “weirdness” the subject
would like to note. We then ask a series of wrap up questions
to assess to which extent the subject realized what actually
happened during the experiment. The remainder of this section
provides the details about the two phases, the assessment and
wrap-up questions, as well as the results of the study.

3Given the nature of our study, we needed to use concealment. We note
that we properly included the description of this element while preparing our
application package to obtain IRB approval. We also note that, as per IRB
guidelines, at the end of the experiment each of the subject was debriefed
about the real nature of the study.

4I.e., there is a 50% chance the first run will be the attack, and 50% the
first run will be the control.
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Phase #1: Clickjacking and Silent App Installation. This
phase aims at testing the practicality of the attacks #1 and
#2 (related to clickjacking), and #8 and #9 (related to the
silent installation of a God-mode app). For this phase, we
ask the subject to interact with one app we wrote. We
pre-installed this app on our test device before the beginning
of the experiment. This app is disguised as a simple tutorial.
The user is asked to click on three buttons: “Start Tutorial,”
“Next,” and “OK.” After the subject clicks on the final OK
button, the app shows a short animation (for a duration of
about 20 seconds). Once the video is over, a final message is
shown. This marks the end of the first phase.

Unbeknownst to the user, what actually happens during the
attack run is that the first three clicks enable the accessibility
service: the first one clicks on the entry related to our app, the
second one clicks on the “on/off” Switch widget, while the
final click on the OK button actually clicks on the real OK
button; i.e., we are showing them overlays with text related
to our tutorial, with holes in the overlay to show buttons that
belong to the Settings app below. At this point, our malicious
app uses the SYSTEM ALERT WINDOW permission to
create an on-top overlay that shows the video and, in the
meantime, it uses the BIND ACCESSIBILITY SERVICE
permission to silently enable side-loading of third-party apps
and install a secondary, much more malicious app (which was
embedded in the first). Then, it enables all its permissions,
grants it device admin capabilities, and before the video is
over, dismisses all the “recent” views so that the user will not
notice anything once the attack is over. The secondary app
that is installed is disguised as “Google Parental Control” app.
Figure 3 depicts how our attack #8 can achieve its stealthiness,
and it shows how our attack improves over existing ones.

As for the control run, we showed the user real UIs with
the same text and buttons that are actually generated by our
app, and, after the user clicks all three buttons, we show them
the same tutorial video.

Phase #2: Password Stealer. This phase aims at evaluating
the practicality of attack #5. In particular, we asked the subject
to login on Facebook (with test credentials we provided). The
subject needed to open the Facebook app, type the password
in (the username was pre-filled by the app’s cache), and click
on the “Log In” button. As in the previous case, this phase
is executed twice: in one of the two cases our malicious app
performed the attack, while it remained idle in the other one.

In this case, during the attack run, our malicious app would
use the accessibility service to infer that the user had opened
the Facebook app, and it would then create an overlay that
would resemble the password and login button widgets used by
the real Facebook app (since the username is stored in a non-
protected EditText widget, the malware can steal it by sim-
ply using the getText()’s accessibility service API). The
unsuspecting subject would thus interact with our malicious
widgets, type her password in, and click on the login button.
At this point, our malicious app would copy the (now leaked)
password to the real Facebook app, click on the real login but-
ton, and dismiss the malicious overlays. On the other hand, no

overlay is created on top of the Facebook app during the “con-
trol run.” Figure 4 graphically depicts this attack and it demon-
strates its advantage over existing attacks that only use fake UI.

Assessment Questions. After each of the two phases, we
asked several questions to assess whether the subject noticed
any difference or any “weirdness” while performing the
required steps. These questions include “Did you notice any
difference?”, “Did you notice any slowdown?”, and “Did you
notice any weirdness?”. We allowed the subject to provide a
yes/no answer as well as an open answer to let her clarify
any of her thoughts.

Wrap-up Questions. Once the experiments for the two sets
of attacks are concluded, we asked the subject to answer
several questions in order to assess to which extent the subject
understood what really happened during the experiments. We
also took this opportunity to test the subject’s knowledge on
the two permissions we focus on in this paper. As the very
last question, we reveal to the subject that the initial app was
malicious: once again, we gave the subject free access to the
device, and we ask him/her to note any impression, idea, or hy-
pothesis about what actually happened during the experiment.

B. Results & Insights

We now describe the results of our user study. We organize
the discussion by describing the results of each component of
the attack: clickjacking, silent app installation, and password
stealer. We then provide insights about the general awareness
of the subjects.

Clickjacking. None of the 20 subjects noticed any weirdness
while they were under attack. In particular, none of them
reported noticing any difference between the two runs of
the experiment. We conclude that our clickjacking attack
is practical. We also note that this attack is practical even
when assuming that the FLAG_WINDOW_IS_OBSCURED
flag functionality were correctly implemented (that is, no
overlay can obscure any part of the OK button).

Silent God-mode App Installation. Once again, none of the
subject even suspected that they were under attack and they
did not notice any significant difference between the two runs
of the experiment. Interestingly, a few subjects did report
some very general differences regarding some audio/video
aspects of the video we showed. For example, two subjects
reported that the image and sound quality decreased, or
that the sound was higher in one case. One other subject
reported that “the initial splash screen seems different.” Lastly,
two other subjects reported that the duration of the video
changed between the two runs. However, we cannot find any
correlations between the reported differences and whether a
particular run is the attack run or not; to the contrary, for the
reports about the video length, one subject thought the video
played while the attack was launched was shorter, while the
other subject reported the exact opposite. One hypothesis that
explains why these subjects reported these differences is that
they simply assumed there was a difference to be detected.
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As a matter of fact, quite a few participants smiled when
asked “Did you notice any difference?”: they then confessed
they had no idea where the difference could have been.

Password Stealing. 18 out of the 20 human subjects did
not detect any differences or weirdnesses between the two
times they were asked to login into Facebook. The remaining
two subjects triggered a bug in our implementation and,
although they did not understand they were under attack,
they did notice some graphical glitches. One of these two
subjects miss-clicked on the widget holding the username
and he noticed a graphical glitch. Nonetheless, the subject
did not understand he was under attack, and he reported that
he found differences in the “touch sensitiveness.” The other
subject encountered a different problem: instead of clicking
on the “log in” button, he clicked on the “enter” keyboard’s
button, which our prototype did not handle correctly. Once
again, the subject just noticed the glitch without realizing
he was under attack. We note that these glitches are caused
by simple imperfections of our prototype, and they are not
caused by any conceptual limitation of our attacks.

At the end of the experiment, we explained to these two sub-
jects the details about the attacks we were testing and why they
encountered those graphical glitches. As an additional experi-
ment, we asked them to repeat the experiment: Both subjects
were not able to distinguish in which case they were under
attack even if they knew we were attacking them during one
of the two runs. We believe these results show that this attack
is practical. We also note that this attack is the most complex
(and most challenging to fix) among the other two other attacks
to record the user’s keystrokes (i.e., attacks #3 and #4).

Overall Awareness. None of the users was able to even
suspect that they were under attack. What is more worrisome
is that none of the users actually managed to understand what
happened even after we told them the app they played with was
malicious and even after we gave complete and free access to
the compromised device. We also stress that the subjects could
not detect anything even when they had a chance to directly
compare what happened against a “benign” baseline: In a
real-world scenario, there would not be any baseline to use as
reference. We also argue that it is quite easy to hide a malicious
app among many benign ones. In fact, one subject opened the
device admin settings and she found our seemingly benign
“Google Parental Control” app: still, she did not suspect that
app was malicious, and she assumed it was a system app.
Only one subject noticed one aspect that was marginally
related to our attack: the device was configured to enable the
installation of side-loading app. While our attack turned this
feature on, it is quite simple to “improve” the malware to reset
the side-loading settings as it were before the attack started.

Finally, only two out of the 20 subjects knew what the
SYSTEM ALERT WINDOW permission was and what an
app with this permission can do. Instead, only five subjects
knew what the accessibility service was (in fact, eight subjects
in total declared to know about it, but three of them provided

a wrong description). Interestingly enough, no single subject
knew the details about both permissions.

We believe these results clearly indicate that the attacks we
discuss in this paper are practical. Our results also indicate
that the user’s awareness of these permissions and thus
of the risks they pose is currently quite low. We believe
this is particularly worrisome because the user is not even
notified about these two permissions and she will thus remain
completely unsuspecting.

VIII. DISCUSSION

The numerous attacks we described and the
results of our user study highlight that the risks
imposed by the SYSTEM ALERT WINDOW and
BIND ACCESSIBILITY SERVICE permissions are currently
vastly underestimated.

Responsible Disclosure. We responsibly disclosed all
our findings to the Android security team, which promptly
acknowledged the security issues we reported. When available,
the fixes will be distributed through an over-the-air (OTA)
update as part of the monthly Android Security Bulletins [13].

No Easy Fix. Unfortunately, even if we reported these
problems several months ago, these vulnerabilities are still
unpatched and potentially exploitable. This is due to the fact
the majority of the presented attacks are possible due to the
inherent design issues outlined in Section V. Thus, it is chal-
lenging to develop and deploy security patches as they would
require modifications of several core Android components. As
an example, consider the issue related to all widgets are treated
equally: to address this issue, the Android system would need
to be modified so to add the concept of type of widget and so to
react in different ways depending on such type. We argue we
need a more principled design mechanism that directly focuses
at addressing the design issues we uncovered or, alternatively,
at making sure they cannot be weaponized to be a real concern.

IX. SECURING THE ANDROID GRAPHICAL UI

This section proposes a series of modifications and
enhancements to the Android system that directly address the
design shortcomings we described in the previous section. Our
proposed modifications are constituted by two main compo-
nents: first, the introduction of secure apps and widgets, and,
second, system popups. These new mechanisms would require
system modifications, which we believe to be necessary.
However, given the problematic state for which Android
devices receive updates, we also discuss two recommendations
that can be deployed within a much shorter timeframe.

A. Secure Apps & Widgets

We envision an extension of the Android framework that
allows a developer to easily indicate to the OS that a given
widget is security-sensitive. There are many typologies of
widgets that a developer may want to flag as security-sensitive.
Few examples are: Button or Switch widgets whose “click
action” have a security-related semantics; TextView or
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EditText widgets that store passwords or two-factor authen-
tication tokens; Button widgets for which merely knowing
that they have been clicked might leak sensitive information
(e.g., buttons on the keyboard app or on the security pad).

It should be as easy as possible for a developer to spec-
ify that a given widget is security-sensitive and, ideally,
it should not require the implementation of any custom
logic. We propose to define a new flag, which we call
FLAG_SECURITY_SENSITIVE (or secure flag, in short),
that a developer should be able to set for an arbitrary widget
or view. As an additional convenient extension, the developer
should be able to indicate to the OS that an entire activity, or
even an entire app, should be considered as security-sensitive:
in these cases, the secure flag should be conceptually propa-
gated to all sub-views. The semantics of this flag is intuitive:
it tells the Android OS that a given widget, activity, or app
plays a security-related “role,” and it thus needs special care.

This approach is preferable with respect to the current
one because the developer does not need to implement any
custom logic on how the app should “react” based on whether
the FLAG_WINDOW_IS_OBSCURED flag is set. In fact, our
proposal allows a developer to rely on a secure-by-design
fallback such as “discard any interaction if the context is
unsafe and notify the user.” Moreover, the current approach
only lets the developer detect problematic cases where an
overlay is on top of a widget: as we have shown in this
paper, this is only one of the many problems. We believe
that a defense design system should be comprehensive. As
a possible further extension, the developer would be given
the possibility to customize how to “react” when an unsafe
situation is encountered: however, we believe that “custom
logic” should be the exception, rather than the rule.

Enforced Security Properties. We now define what are the
properties that the OS should enforce for secure widgets (i.e.,
widgets for which the secure flag is set). First, whenever the
user is interacting with an app that embeds any secure widget,
no other app should be allowed to interfere with the user’s
interaction by being able to create arbitrary overlays on top.
We note that this should apply not only for Button widgets,
but also for EditText widgets that store user-entered
passwords: When the user is interacting with “buttons” or
“data” (of any kind) that are security-relevant, there should
not be, by design, any possibility to (even subtly) interfere
with it. (We note that there are few legitimate scenarios where
this constraint might create practicality issues. We address
these issues later in this section.)

Moreover, the OS should enforce that no input from the user
should be accepted if there was something on top in the past
few seconds. This precaution would make sure that the user
has sufficient time and information to take informed decisions.
This idea has been first proposed by Roesner et al. in [14].

We note that the proposed mechanism might cause
backward compatibility issues: what would happen if a third-
party app attempts to create a widget on top while the user is
interacting with a secure app? One solution to address these
issues is the following: instead of denying the possibility for

an app to draw overlays, the OS would still allow it, but none
of these widgets would be actually rendered while the user is
interacting with a secure view. This would not break existing
apps and it would ensure that the user cannot be misled.

Another property that should be enforced is that an
accessibility service should not be able to automatically click
or perform any action on any secure widgets: if the developer
of an app would like to provide an option for an action to
be performed programmatically, the developer should expose
such functionality through an appropriate API (and protected
by a permission, if needed). We note it is safe enough to let
third-party accessibility apps to automatically fill EditText
widgets, even if they store user-sensitive information. This
would assure backward compatibility with popular apps such
as LastPass.

Last, there should not be any direct or indirect mechanism
to infer or leak information stored in secure widgets. As it
already happens with password-related EditText widgets,
the getText() method should return an empty string. The
same principle should apply for TextView widgets that
contain, for example, two factor authentication codes. We note
that in some scenarios, the mere fact that a specific button or
TextView has been clicked could also constitute a problem.
For example, by knowing on which keyboard’s TextView
widget the user is clicking, it is trivial to record all keystrokes.
Thus, no accessibility events should be generated when the
user interacts with these security-sensitive widgets.

Addressing Design Shortcomings. The Android API
extension we just discussed directly addresses the design
shortcomings we uncovered for this work. The new typology
of widgets and apps, i.e., secure widgets and apps, addresses
the shortcoming related to the fact that the Android OS treats
all widgets equal (i.e., DS#2). Third-party apps are also now
prevented to tamper with security-sensitive applications: while
they are still able to create arbitrary widgets, our proposal
effectively avoids the weaponization of such capability, thus
effectively making DS#1 innocuous.

Our proposal also addresses DS#4: while apps would not
have explicit control over the current context, they would
have an OS-enforced guarantee that the context is safe enough
to trust user’s input. Interestingly, another option would have
been to provide finer-grained information about the current
context: which app is currently displaying widgets? In which
positions? We argue this would be a bad decision. In fact, the
more information is exposed to a third-party app, the more
likely is that this information can be used as a side-channel
to mount attacks (cf. DS#3). We believe our proposal hits the
sweet spot in the trade-off between information provided to
the app and possibility of having side channels.

Adoption. Once the modifications proposed in this paper
are integrated within the Android OS, we envision Google
leading the way and marking as “secure” critical apps such
as the Android Settings app and the Keyboard app. Moreover,
any widget that prompts the user for any security-relevant
question should be marked as “secure” as well. Moreover,
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we believe developers of third-party apps would smoothly
transition to using the proposed API extension: in fact, taking
advantage of this system would require the usage of a single
flag and, differently from the existing system, it would not
require the implementation of any custom logic.

B. System Popups
Our proposal would be effective in addressing (or preventing

abuse of) the design shortcomings we highlighted. However,
our proposal has one side-effect that could cause compatibility
problems: no app would be allowed to create any overlay
when the user is about to input her credentials in a login
activity (which should be assumed to be marked as “secure”);
However, this mechanism might break certain legitimate
functionalities. For example, when the current version of the
LastPass app detects that an user is about to type her creden-
tials in a login form, it creates an on-top overlay offering the
user the possibility of using LastPass’ auto-fill functionality.

We argue that what distinguishes this benign functionality
and the attacks we presented is that, in this case, it is very
clear for the user that there is an overlay on top and it is clear
which app generated it: we build on top of this observation
to further extend our proposal with the introduction of a
well-defined API to create system popups. We define a system
popup as a system-generated, clearly-defined overlay that
resembles web-based popups: the shape and layout are defined
by the OS and cannot be customized by an unprivileged app,
and the only freedom left to the app developer is the definition
of the popup’s content and whether to show one (or more)
clickable buttons. Moreover, a system popup will include
information about the app requesting its creation, so to avoid
any source of confusion. Last, the OS should also dim the
background out, as it already happens for standard dialogs.

We note that we introduce the concept of system popups
not to address a specific design shortcoming, but to address
a potential usability limitation of our proposal. In a way, we
remove the need for legitimate apps such as LastPass to have
access to an API to create arbitrarily custom overlays, which,
as we have seen, provide a powerful primitive to mislead users.

C. Limitations
We acknowledge that our proposal has a few limitations.

First, we leave the responsibility to indicate which widgets
should be considered as security-sensitive to the developer. An
interesting future research direction is how to automatically
determine where to place these checks. We note that this
limitation affects the current system as well. Second, the
proposed modifications would prevent certain types of
security-sensitive widgets to generate accessibility events,
which could be useful in some specific context. One solution
to not negatively interfere with these scenarios is to allow
only system-signed apps to have full access to these security-
sensitive widgets: since system-signed apps already have very
elevated privileges and are considered a trusted extension
of the OS itself, we argue this is a reasonable compromise.
Last, our proposal does not prevent a malicious app to
use the BIND ACCESSIBILITY SERVICE permission as

a side-channel to infer which app the user is interacting
with and to subsequently mount existing GUI confusion and
task-hijacking attacks [1], [2], [3]. While these attacks are
not as stealthy as the ones we proposed, they could still be
effective against the less security-conscious users.

D. Short-term Recommendations

Our proposal would be implemented as a series of system
modifications. Thus, by its nature, it is going to take some
time for our proposal to be deployed on users’ devices. On
the other hand, this work shows that the threat associated to
these attacks is real. We argue that, in the meantime, Google
should follow two recommendations.

First, the SYSTEM ALERT WINDOW permission can
seriously hinder the security of the entire device, and we
strongly believe it should not be automatically granted,
not even for apps hosted on the Play Store. Moreover, our
user study suggests that users do not clearly understand the
security implications of an app with this permission. By not
automatically granting this permission, the Android OS would
have a chance to explain what an app with this permission is
really capable of.

Second, we believe Google should scrutinize more
accurately apps with this combination of permissions. As we
discussed earlier, it was trivial to get an app requiring both
permissions and including malicious-looking functionality,
such as the possibility of downloading and executing arbitrary
code from a network end-point. Since the volume of submitted
apps requiring both these permissions seems to be relatively
low (only 17 apps out of the 4,455 top apps we crawled
require both permissions), we believe that even manual
vetting could be a scalable approach.

These recommendations would not address the design
shortcomings we identified, but they have the advantage of
being immediately deployable. In fact, the first one would
simply require an update of the Play Store app, which Google
obviously controls, while the second one simply requires
more scrutiny during the vetting process.

X. RELATED WORK

Recent years have seen the migration of UI attacks to
mobile OSs. For example, Rydstedt et al. [15] demonstrate
that mobile browsers are vulnerable to framing attacks, while
Felt et al. [11], Niemietz et al. [12], Chen et al. [1], Bianchi et
al. [2], and Ren et al. [3] study the use of UI attacks to lure
users to enter their credentials into fake/malicious UIs. These
works showed that these attacks are practical, and can affect
millions of Android apps.

However, the previous attacks suffer from two limitations.
First, they rely on OS-provided side channels (e.g., access
to the /proc file-system), which are being systematically
removed by Google. As a result, all known task hijacking
techniques will not work on modern versions of Android.
Second, after the user has inserted her credential into the
malicious UI, the user will not see the expected result of
a successful login, and she might become suspicious. This
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highlights the importances to have both the ability to show
the users the attacker’s intended UI, and also to preserve
the expected user experience once the fake UI is dismissed;
the clickjacking attacks presented in this work address these
limitations by utilizing the accessibility service to know when
to pop-up our fake UI and to log the user in using the stolen
credential after the fake UI is dismissed (cf. Attack #5).

The “draw on top” feature has been abused by malware
to mount clickjacking attacks [16], [17], [18], [19], [7],
[20] (which was first introduced as “redressing” attacks
by Niemietz et al. in [12]) to, for example, lure the user
into enabling device administrator capabilities. In response,
Google introduced the FLAG_WINDOW_IS_OBSCURED flag
to counter the risk. Our work shows that this current defense
mechanism is vulnerable by design. Moreover, we show
how the existing clickjacking techniques can be significantly
improved in multiple regards: we show how the complexity
of the Android framework often leads to very fine-grained
side channels, and how it is possible to implement context-
aware clickjacking. Our user study also shows that these
attacks are extremely practical and stealthy. Furthermore,
by combining the SYSTEM ALERT WINDOW permission
and the accessibility service, we made previous clickjacking
attacks more practical by removing the reliance on vanishing
side-channels (to know when to show the fake UI) and by
reliably dismissing the fake UI when the user clicks on
something to preserve the user experience.

Recently, malware have been found using Android’s acces-
sibility service to bypass security enhancements or to install
apps [4], [21], [22]. Kraunelis et al. [23] point out how
malicious apps can abuse the accessibility service on Android
to detect app launching, and to race running on the top, while
Jang et al. [24] showed that accessibility service, which is
available on all popular systems, leads to a new kind of vulner-
abilities in existing defense. All these existing attacks are vis-
ible to the users, thus will lead to user reactions that are detri-
mental to further attacks. In contrast, our work shows how one
can use the SYSTEM ALERT WINDOW permission to dis-
tract the user and cover up the almost arbitrary malicious oper-
ations performed by BIND ACCESSIBILITY SERVICE un-
derneath. Thus, for the first time, we add stealthiness to these
already devastating attacks: our user study showed that none
of the 20 human subjects even realized they were attacked.

Along with the increasingly popular attacks on mobile
devices, there is also a large body of works proposing defense
solutions. Malisa et al. [25] propose to detect spoofing attacks
by leveraging screenshot extraction and visual similarity
comparison, but our attack does not use spoofed UI. Bianchi et
al. [2] propose the use of a security indicator to help users
identify which app they are interacting with, and make sure
that the inputs go to the app. In [26], Fernandes et al. find
that this approach introduces side channels and they propose
to notify the user when a background non-system app draws

an overlay on top of the foreground app. However, this will
disrupt many legitimate apps that use overlays (e.g., Facebook,
LastPass); our proposal, instead, provides app developers the
flexibility to determine when they want to prohibit overlays.
Similarly, Ren et al. propose the Android Window Integrity
policy [27], which restricts the use of overlay to only
white-listed apps and also protects the navigation between
apps/activities using the “back” and “recent” buttons.

Some of the defense mechanisms proposed in Section IX
are inspired by previous works. For example, we adopted
the idea that overlays cannot cover secure widgets, and
users should have sufficient time to interact with them,
which is proposed by Ringer et al. [28] and Roesner [14].
However, if the semantic of the secure widgets relies on
neighboring widgets (e.g., a generic “OK” button), the
approach proposed in [28] may suffer the same problem
as the FLAG_WINDOW_IS_OBSCURED flag; in this case,
we need to protect both the widget and the associated text.
Moreover, the proposal to prevent accessibility service from
programmatically interacting with secure widgets is similar to
the input integrity principle from Roesner et al. [29]. More-
over, we are inspired by Jang et al. [24]’s recommendations
that allow developers to flag how different widgets will handle
inputs from accessibility service. Finally, it’s possible to use
the method from Nan et al. [30] to automatically identify
security sensitive UI widgets and apply the proper defense.

XI. CONCLUSION

In this paper we have uncovered several design
shortcomings that, in turn, make an Android
app with the SYSTEM ALERT WINDOW and
BIND ACCESSIBILITY SERVICE permissions able to
mount devastating and stealthy attacks, which we called “cloak
and dagger.” Our experiments show that it is very easy to get
an app on the Play Store and that the context-aware click-
jacking, silent installation of a God-mode app, and keystroke
inference attacks are both practical and stealthy. We hope that
our work will raise awareness of the real danger associated
with these two permissions, and that Google will reconsider
its decisions and adopt our proposed defense mechanism.
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APPENDIX

# Attack Name Attack Primitives Design Shortcoming Requested Permission Malicious Functionality

1 Context-aware Clickjacking À Á À Â Ã DRAW Clickjacking attacks aware of
users’ actions

2 Context Hiding À À Â Ã DRAW Hide real context a user is
interacting with

3 Keystroke Inference Á Ã À Â DRAW Record all users’ keystrokes

4 Keyboard App Hijacking Á Ã Á ACCESS Record all users’ keystrokes

5 Password Stealing À Á Â Ã À Á DRAW & ACCESS Steal users’ credentials

6 Security PIN Stealing Ã Á ACCESS Steal users’ PIN

7 Phone Screen Unlocking Â Á ACCESS Unlock the device’s screen

8 Slient App Installation À Â À Á Ã ACCESS Install apps sliently

9 Enabling All Permissions À Â À Á Ã DRAW & ACCESS Enable apps’ permissions sliently

10 2FA Token Stealing Á Á Ã ACCESS Steal all users’ tokens

11 Ad Hijacking À Á Ã À Ã DRAW & ACCESS Hijack other apps’ ads

12 Exploring the Web Â Á Ã ACCESS Open the browser, browse
arbitrary pages and perform
arbitrary operations

TABLE I: Systematization of the attacks. For each attack, we report the attack primitives they rely on, the design shortcoming
they exploit, the permissions they request, and a short summary of the malicious functionality they implement. Note that, for
conciseness, we indicate SYSTEM ALERT WINDOW with DRAW and BIND ACCESSIBILITY SERVICE with ACCESS.
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